
lnt d. Heat Mass TransJer. Vol. 21, pp. 67-69. Pergamon Press 1978. Printed in Great Britain 

T R A N S I E N T  F R E E  C O N V E C T I O N  O N  A N  I S O T H E R M A L  

V E R T I C A L  F L A T  P L A T E  

D. B. INGHAM 
Department of Applied Mathematical Studies, Leeds University, 

Leeds LS2 9JT, Yorkshire, England 

(Receired 20 December 1976 and in revised form 25 April 1977) 

NOMENCLATURE 

9, acceleration due to gravity ; 
M, N, number of mesh points in Y and X 

directions respectively ; 
Pr, Prandtl number ( = v/a); 
R, a "Reynolds" number [ = 2/(UAX)] ; 
t, dimensionless time 

[ = time (gfl lAT)2/3/v 1/3] ; 
At, dimensionless time step ; 
T, dimensionless temperature 

[- = (Temperature-  Ti)/AT] ; 
T~, initial temperature of fluid ; 
Tw, temperature of plate ; 
AT, T~,- T~ : 
u, v, velocities in the x and y directions 

respectively ; 
U, dimensionless velocity in x direction 

[ = u/(vgfllAT)l/3]; 
V, dimensionless velocity in y direction 

[=  v/(vgfllAT)l/3] ; 
x, y, distances along the plate from the 

leading edge and normal to the plate 
respectively ; 

X, dimensionless distance along the plate 
from the leading edge 
[ = X(gfl, AT/v2) 1/3] ; 

Y, dimensionless distance normal to the 
plate [ = Y(gflt AT~v2) 1/3] ; 

X . . . .  Ymax, maximum values of X and Y 
taken respectively ; 

AX, AY, dimensionless finite difference 
step lengths in the X and Y directions 
respectively. 

Greek symbols 
~, thermal diffusivity of fluid ; 
ill, volumetric coefficient of thermal 

expansion ; 
fl, dimensionless heat-transfer coefficient 

[ =  - X' /*(OT/SY)r_o];  
v, kinematic viscosity of fluid ; 
r, a similarity variable (= t/XU2); 
re, the value of z up to which the 

analytical solution for small values of 
is valid. 

INTRODUCTION 

THE PROBLEM of a semi-infinite vertical plate which is situated 
in an infinite fluid that is initially cold and at rest and then 
impulsively heated has been investigated by several authors. 
The fluid has been assumed incompressible except for a 
temperature dependent buoyant effect in the momentum 
equation and the boundary-layer assumptions have been 
made. By defining an appropriate dimensionless temperature 
T, distances X along the plate from the leading edge and Y 
perpendicular to the plate then the governing equations are, 
see Hellums and Churchill [-1], 
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Momentum: 

8U 8U 8U 82U 
~ + U _ _ _ + V  = T +  , (1) 
8 t  8 X  8Y 8 y  2 

Energy: 

OT ~T OT 1 02T 
8t + U ~ x  + V o Y  - P r  c~Y z '  (2) 

Continuity: 

c3U 8V 
+ =0. (3) 

~X OY 

Here U and V are the dimensionless velocities in the X and Y 
directions respectively, t is the dimensionless time and Pr the 
Prandtl number of the fluid. Equations (1)-(3) have to be 
solved subject to the initial and boundary conditions, 

X = O :  U =  V = T = O ,  

Y = O :  U = V = O ,  T = I ,  
(4) 

Y ~ o G :  U , V , T ~ O ,  

t =O: U = V = T =O. 

Equations (1)-(3) have been solved using a numerical 
technique as described by Hellums and Churchill [1] and 
Carnaham et al. [2]. Callahan and Marner [3] have recently 
solved this problem by the same technique with the addition 
of the effects of mass transfer. Brown and Riley [4] reduced 
equations (1) (3) to similarity form and obtained analytical 
results which are valid for small and large values of the 
similarity variable r = t /X  U2. Further, they predict a time up 
to which their unsteady solution for small time is applicable, 
say r c. On using standard methods of dealing with these types 
of similarity equations, namely Hall [5], Dennis [-6] and 
Watkins [7] no solutions which satisfactorily match the 
analytical solutions for small and large times have yet been 
obtained. The numerical results presented in [1-3] all show a 
breakaway from the unsteady solution before r c. It therefore 
seems appropriate to investigate more thoroughly the me- 
thods described in [1-3] to see if results consistent with the 
theory can be obtained. If not, an explanation must be sought 
and there seems little point in adding in other effects into 
equations (1)-(3) until this point has been cleared. 

RESULTS AND CONCLUSIONS 

As taken by Hellums and Churchill [1] we consider the 
height of the plate to be Xma x ( = 100) and the maximum value 
of Y to be Ymax(= 25) as corresponding to infinity and for 
simplicity a constant mesh size is used in the X and Y 
directions, namely AX = XmaffN and A Y =  Ymax/M re- 
spectively, where M and N are integers. Derivatives in 
equations (1) and (2) are written in central differences for 
~z/~y2 terms, backward for the 8/OX terms and forward for 
the 8/8Y and 8/8t terms. For Pr = 0.733 the results obtained 
here are identical with those presented in [1] and [2] for the 
mesh sizes used, namely N = M =  10 and N = M = 4 0 .  
Brown and Riley's [4] results are presented for Pr = 1 and 
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theretore attention was tocussed on this value of the Prandtl 
number. Figure 1 shows the wuiation of the dimensionless 
heat-transfer parameter i l l -  --XI 4(~'T {'Y)~ or us a full- 
ction of "c ewlluated at X ..... flor M 40 and N - 40. 80, 160 
and 240. The exact theoretical variation as determined by 
Brown and Riley [4] for small values of r is also shown, the differential form. using central differences throughout, are 
termination point of the curve is the limit of validity of their 
solution, q.  It is seen that as AX-+ 0 the results tend to + { + l' 
remain on the correct analytical solution for larger values of~ ?t ?X ? )  
but once the solution breaks away from this solution the 
change in fi with T is x, ery rapid and overshoots and 
oscillations occur. The smaller AX becomes then (i) the larger 
is the maximum gradient offl with r, and (it) the quicker is the 
transition from the unsteady to the steady solution. The 
variation of fi with r using a fixed value of AX and several 
different values of AY showed ~,ery little difference. 

Figure 2 shows the variation of fi with "r computed at 
several different stations X ahmg the plate and M - 40 and 
N = 160 and the analytical unsteady solution. Similar results 
apply Ik)r other values of M and N. This shows that the 
numerical results obtained do not exhibit the similarity 
property. For u fixed value of M and N as the value of X 
increases the numerical solution agrees longer with the 
analytical solution and comments (i) and (ii) above also 
apply to the taking of larger values of X, 

An investigation el the consistent) oi the l imit  diilcrcncc 
equations obtained from the discrcli/ation oi equatlol>, 
(1) (3)shows that they are consistent as At, AX and AY ~ 0 
It is easily seen that the finite difference equations represent- 
ing equations (1) and (2) when interpreted back into partial 

VAY ?el.' ] 
2 <7y2 +O(At-LAX ~-.AY'), !5~ 

?T ( 7  P I  
+ L + V 

?t ? X ? Y 

1 C2T At 3T UAX ~21 I'AY ~'1" ] 
= - I  

Pr  ¢'Y'- + -- "~ i"t 2 {L¥ :  2 ,~},21 

~OIAt: .AX2 AY2). (6) 

As At ~ AY 2, for stability of the numerical scheme, the tern> 
in At are small. The terms (VAY,'2 tSxU,'fY 2 and 
(VAY,,'2)(p2T!?Y 2) add (since V is negative) to the terms 
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g2U/~y2 and ~,2T/~y2 in equations (5) and (6) respectively 
but as AY and V are small these discretization errors will not 
have a marked effect on the numerical calculations. This was 
in fact verified numerically in that the solutions were not too 
sensitive to the choice of A Y. The terms (UAX/2)(~2 U/~X 2) 
and (UAX/2)(?2T/gX 2) effectively add, artificially, diffusion 
in the X direction. Thus if Pr = 1 we may consider the 
coefficients of these second derivatives in X being inversely 
proportional to a "Reynolds number", R say, i.e. 

2 
R - (7) 

UA X  " 

With the values of U and AX used in the calculations it is 
found that near the maximum value of U then R is O(1). 
Obviously near the plate and at the outer edge of the 
boundary layer U is very small and the value of R is therefore 
very large. Since it is at the maximum value of U where the 
disturbance from the leading edge is travelling fastest, which 
in turn determines the position up to which the unsteady 
solution is valid, it is important that the detail of the solution 
should be correct here. Because of this artificial adding of a 
large amount of diffusion in the X direction in this critical 
region it is not therefore surprising that the results of this 
method do not agree with the analytical results. 

It should be remembered that a possible mathematical 
solution to this problem is that for r < r*, some critical value 
oft ,  the unsteady solution holds whereas for r > r* the steady 
solution is valid and the solution is discontinuous at z = ~*. If 
this is the only solution to equations (1)-(3) it is not 
surprising that the results obtained using the methods 
described in [5 7] may fail to converge. Whereas using the 
method described in [1 -3], and used here, which artificially 
adds diffusion in the X direction will obviously converge to an 
answer which in the limit as AX ---, 0 or Xma x ~ VC and AY 

0 will approach the true solution. As observed from Figs. 1 
and 2 taking these limits for a fixed AY shows a tendency for 
the transition from the unsteady to the steady solution to be 
more rapid and maybe the above mathematical solution is the 
one to which the results are tending. 

One may add in a variable mesh in order to reduce the 
computing time and yet keep good detail near X = 0 and Y 
= 0 as was used by Callahan and Marner [3] but the values of 
AX/Xma x and AY/Yma x used here were smaller than the finest 
meshes used in [3]. Although they quote results which agreed 
to within 7% when the space mesh was halved one can see 
from the results presented here that this is not a sufficient test 
to the accuracy of the method. 
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NOMENCLATURE 

temperature [-"C] ; 
distance I-m] ; 
specific heat 11J/kg C]  ; 
thermal diffusivity [m2/s] ; 
thermal conductivity 11W/m°C] ; 
density [kg/m3]. 

C, 

m,  

C ~, 

k, 
,0, 

INTRODI !CTION 

THE PURPOSE of this short communication is to report the 
results of new work performed with the "microtransient 
diffusivity measuring system" since that previously reported 
[1, 2], and to summarize experimental modifications effected 
to increase measurement accuracy. Specifically, the new work 
addressed the class of so called "weak 1R absorbing" fluids 113, 
4]. For this class of fluids, including carbon tetrachloride and 
toluene, the results support the conclusion that experimental 
techniques for measuring thermal conductivity may have a 
systematic error in results reported, if care is not taken to 

* Present address: U.S. Dept. of Energy, 20 Massachusetts 
Ave., Washington D.C. 20545. 

discriminate against the detection of energy transfer by 
radiation when energy transfer by conduction is the desired 
process being measured. 

The data generated by this technique were for measure- 
ment distances significantly smaller than those used by any 
other existing heat-transfer measurement techniques, and 
implied for the "small" distances used a larger radiation 
contribution potential than previously determined for "weak 
IR absorbing" fluids. 

NEW MEASUREMENTS, AND RESULTS FOR LIQUIDS OF THE WEA- 

KLY IR ABSORBING CLASS 

By way of summary, Appendix A presents a schematic of 
the measuring technique developed and already reported, as 
well as modifications made to the measuring system to 
increase the precision of the measurement from that orig- 
inally developed. In the apparatus, as it is currently used, a 
cylindrical line source (~200gm long) acts as a short 
duration transient energy input (~200 gs) within a trans- 
parent test fluid. The source, created from a biological laser 
coupled to an inverted metallurgical microscope, induces 
shock, radiation, and thermal transients in the test fluid. The 


