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NOMENCLATURE

g, acceleration due to gravity;

M, N, number of mesh pointsin Y and X
directions respectively;

Pr, Prandtl number (= v/a);

R, a “Reynolds” number [ =2/(UAX)];

t, dimensionless time
[ = time (gB,AT)**v'?];

At, dimensionless time step ;

T, dimensionless temperature
[ = (Temperature — T;)/AT];

T, initial temperature of fluid ;

T, temperature of plate;

AT, T.— T

u, v, velocities in the x and y directions
respectively;

U, dimensionless velocity in x direction
[=u/(vgB,AT)">];

V, dimensionless velocity in y direction
[= v/(vgB AT)V];

X, J, distances along the plate from the
leading edge and normal to the plate
respectively ;

X, dimensionless distance along the plate
from the leading edge
[=x(gh ATV?)T;

Y, dimensionless distance normal to the
plate [ = y(gB, AT/v2)"];

X Y, maximum values of X and Y

max> ‘max?

taken respectively;

AX,AY, dimensionless finite difference
step lengths in the X and Y directions
respectively.

Greek symbols

o, thermal diffusivity of fluid ;

B, volumetric coefficient of thermal
expansion ;

B, dimensionless heat-transfer coefficient

[= —-X"*(3T/3Y)y-0];

kinematic viscosity of fluid;

a similarity variable (= t/X'/?);

the value of  up to which the
analytical solution for small values of t
is valid.
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T
T
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INTRODUCTION

THE PROBLEM of a semi-infinite vertical plate which is situated
in an infinite fluid that is initially cold and at rest and then
impulsively heated has been investigated by several authors.
The fluid has been assumed incompressible except for a
temperature dependent buoyant effect in the momentum
equation and the boundary-layer assumptions have been
made. By defining an appropriate dimensionless temperature
T, distances X along the plate from the leading edge and Y
perpendicular to the plate then the governing equations are,
see Hellums and Churchill [1],
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Momentum:
a—U+U8—U+V6—U=T+62—U (1)
ot X Yy ay?’
Energy:
ot X ay  Proy?’
Continuity:
L, o
X ey

Here U and V are the dimensionless velocities in the X and Y
directions respectively, ¢ is the dimensionless time and Pr the
Prandtl number of the fluid. Equations (1)-(3) have to be
solved subject to the initial and boundary conditions,

X=0: U=V =T=0,

Y=0 U=V=0, T=1,

Y—>ow: UV, T-0, @
t=0: U=V=T=0.

Equations (1)-(3) have been solved using a numerical
technique as described by Hellums and Churchill [1] and
Carnaham et al. [2]. Callahan and Marner [3] have recently
solved this problem by the same technique with the addition
of the effects of mass transfer. Brown and Riley [4] reduced
equations (1)—(3) to similarity form and obtained analytical
results which are valid for small and large values of the
similarity variable r = t/X'/2. Further, they predict a time up
to which their unsteady solution for small time is applicable,
say 7. On using standard methods of dealing with these types
of similarity equations, namely Hall [5], Dennis [6] and
Watkins [7] no solutions which satisfactorily match the
analytical solutions for small and large times have yet been
obtained. The numerical results presented in [1-3] all show a
breakaway from the unsteady solution before . It therefore
seems appropriate to investigate more thoroughly the me-
thods described in [1-3] to see if results consistent with the
theory can be obtained. If not, an explanation must be sought
and there seems little point in adding in other effects into
equations (1)-(3) until this point has been cleared.

RESULTS AND CONCLUSIONS

As taken by Hellums and Churchill [1] we consider the
height of the plate to be X ,,, (= 100) and the maximum value
of Y to be Y,,,(=25) as corresponding to infinity and for
simplicity a constant mesh size is used in the X and Y
directions, namely AX = X, ../N and AY =Y, /M re-
spectively, where M and N are integers. Derivatives in
equations (1) and (2) are written in central differences for
8%/0Y? terms, backward for the d/0X terms and forward for
the 8/0Y and d/0t terms. For Pr = 0.733 the results obtained
here are identical with those presented in [1] and [2] for the
mesh sizes used, namely N =M =10 and N = M = 40.
Brown and Riley’s {4] results are presented for Pr = 1 and
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therefore attention was focussed on this value of the Prandtl
number. Figure 1 shows the variation of the dimensionless
heat-transfer parameter f[ = — X" (CTAY)y ] as a fun-
ction of 1 evaluated at X, for M = 40 and N = 40.80. 160
and 240. The exact theoretical variation as determined by
Brown and Riley [4] for small values of t is also shown. the
termination point of the curve is the limit of validity of their
solution, .. 1t is seen that as AX — 0 the results tend to
remain on the correct analytical solution for larger values of t
but once the solution breaks away from this solution the
change in f# with ¢ is very rapid and overshoots and
oscillations occur. The smalier AX becomes then (i) the larger
is the maximum gradient of § with 7. and (i) the quicker is the
transition from the unsicady to the steady solution. The
variation of f# with t using a fixed value of AX and several
different values of AY showed very little difference.

Figure 2 shows the variation of § with v computed at
several different stations X along the plate and M = 40 and
N = 160 and the analytical unsteady solution. Similar results
apply for other values of M and N. This shows that the
numerical results obtained do not exhibit the similarity
property. For a fixed value of M and N as the valuc of X
increases the numerical solution agrees longer with the
analytical solution and comments (i) and (ii) above also
apply to the taking of larger values of X.

An investigation of the consistency of the tinite diflerence
cquations obtained from the discretization of equations
{(1)-(3)shows that they are consistent as At. AX and AY — 0.
It is easily seen that the finite difference equations represent-
ing equations (1) and (2) when interpreted back into partial
differential form. using central differences throughout. arc
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As At ~ AY?, for stability of the numerical scheme, the terms
in At are small. The terms (VAY2H&2U/¢Y?) and
(VAY/2)(&2T/eY?) add (since V is negative) to the terms
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¢*U/éY? and @*T/8Y? in equations (5) and (6) respectively
but as AY and V are small these discretization errors will not
have a marked effect on the numerical calculations. This was
in fact verified numerically in that the solutions were not too
sensitive to the choice of AY. The terms (UAX/2)(0*U/0X?)
and (UAX/2)(é2T/éX?) effectively add, artificially, diffusion
in the X direction. Thus if Pr =1 we may consider the
coefficients of these second derivatives in X being inversely
proportional to a “Reynolds number”, R say, i.e.

2
R=- .
UAX

M

With the values of U and AX used in the calculations it is
found that near the maximum value of U then R is O(1).
Obviously near the plate and at the outer edge of the
boundary layer U is very small and the value of R is therefore
very large. Since it is at the maximum value of U where the
disturbance from the leading edge is travelling fastest, which
in turn determines the position up to which the unsteady
solution is valid, it is important that the detail of the solution
should be correct here. Because of this artificial adding of a
large amount of diffusion in the X direction in this critical
region it is not therefore surprising that the results of this
method do not agree with the analytical results.

It should be remembered that a possible mathematical
solution to this problem is that for t < ¥, some critical value
of 7, the unsteady solution holds whereas for t > 7 the steady
solution is valid and the solution is discontinuous at t = T If
this is the only solution to equations (1)-(3) it is not
surprising that the results obtained using the methods
described in [5-7] may fail to converge. Whereas using the
method described in [1-3], and used here, which artificially
adds diffusion in the X direction will obviously converge to an
answer which in the limit as AX - 0 or X, — 2 and AY
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— 0 will approach the true solution. As observed from Figs. |
and 2 taking these limits for a fixed AY shows a tendency for
the transition from the unsteady to the steady solution to be
more rapid and maybe the above mathematical solution is the
one to which the results are tending.

One may add in a variable mesh in order to reduce the
computing time and yet keep good detail near X = O and Y
= ( as was used by Callahan and Marner [3] but the values of
AX/X ..and AY/Y,  used here were smaller than the finest
meshes used in [3]. Although they quote results which agreed
to within 7% when the space mesh was halved one can see
from the results presented here that this is not a sufficient test
to the accuracy of the method.
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NOMENCLATURE
C, temperature [*C];
m, distance [m];
C, specific heat [J/kg C]:
%, thermal diffusivity [m?/s];
k, thermal conductivity {W/m°C];
0, density [kg/m*].

INTRODU'CTION

THE PURPOSE of this short communication is to report the
results of new work performed with the “microtransient
diffusivity measuring system” since that previously reported
[1, 2], and to summarize experimental modifications effected
to increase measurement accuracy. Specifically, the new work
addressed the class of so called “weak IR absorbing” fluids [3,
4]. For this class of fluids, including carbon tetrachloride and
toluene, the results support the conclusion that experimental
techniques for measuring thermal conductivity may have a
systematic error in results reported, if care is not taken to

* Present address: U.S. Dept. of Energy, 20 Massachusetts
Ave., Washington D.C. 20545.

discriminate against the detection of energy transfer by
radiation when energy transfer by conduction is the desired
process being measured.

The data generated by this technique were for measure-
ment distances significantly smaller than those used by any
other existing heat-transfer measurement techniques, and
implied for the “small” distances used a larger radiation
contribution potential than previously determined for “weak
IR absorbing” fluids.

NEW MEASUREMENTS, AND RESULTS FOR LIQUIDS OF THE WEA-
KLY IR ABSORBING CLASS

By way of summary, Appendix A presents a schematic of
the measuring technique developed and already reported, as
well as modifications made to the measuring system to
increase the precision of the measurement from that orig-
inally developed. In the apparatus, as it is currently used, a
cylindrical line source (~200pum long) acts as a short
duration transient energy input (~200 us) within a trans-
parent test fluid. The source, created from a biological laser
coupled to an inverted metallurgical microscope, induces
shock, radiation, and thermal transients in the test fluid. The



